Finite group actions on shifts of finite type
نویسندگان
چکیده
منابع مشابه
An Invariant of Finite Group Actions on Shifts of Finite Type
We describe a pair of invariants for actions of finite groups on shifts of finite type, the left-reduced and right-reduced shifts. The left-reduced shift was first constructed by U. Fiebig, who showed that its zeta function is an invariant, and in fact equal to the zeta function of the quotient dynamical system. We also give conditions for expansivity of the quotient, and applications to combin...
متن کاملTree-shifts of finite type
A one-sided (resp. two-sided) shift of finite type of dimension one can be described as the set of infinite (resp. bi-infinite) sequences of consecutive edges in a finite-state automaton. While the conjugacy of shifts of finite type is decidable for one-sided shifts of finite type of dimension one, the result is unknown in the two-sided case. In this paper, we study the shifts of finite type de...
متن کاملMaximal harmonic group actions on finite graphs
This paper studies groups of maximal size acting harmonically on a finite graph. Our main result states that these maximal graph groups are exactly the finite quotients of the modular group Γ = 〈 x, y | x = y = 1 〉 of size at least 6. This characterization may be viewed as a discrete analogue of the description of Hurwitz groups as finite quotients of the (2, 3, 7)-triangle group in the context...
متن کاملFinite Group Actions on P ” ( C )
Consider the question: which finite groups operate as symmetries of the complex projective plane P’(C)? Any finite subgroup of &X,(C) acts as a group of collineations and these give the linear models. The list of such groups is relatively short [MBD] but contains, for example, a groups of rank < 2, subgroups of U(Z), and the simple groups A,, A,, an PSL(F,). It turns out that these linear group...
متن کاملFinite Group Actions on Kervaire Manifolds
Let M K be the Kervaire manifold: a closed, piecewise linear (PL) manifold with Kervaire invariant 1 and the same homology as the product S × S of spheres. We show that a finite group of odd order acts freely on M K if and only if it acts freely on S × S. If MK is smoothable, then each smooth structure on MK admits a free smooth involution. If k 6= 2 − 1, then M K does not admit any free TOP in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ergodic Theory and Dynamical Systems
سال: 1985
ISSN: 0143-3857,1469-4417
DOI: 10.1017/s0143385700002728